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ABSTRACT

Context. Magnetic nulls are ubiquitous in space plasmas, and are of interest as sites of localised energy dissipation or magnetic
reconnection. As such, a number of methods have been proposed for detecting nulls in both simulation data and in situ spacecraft data
from Earth’s magnetosphere. The same methods can be applied to detect stagnation points in flow fields.
Aims. In this paper we describe a systematic comparison of different methods for finding magnetic nulls. The Poincaré index method,
the first-order Taylor expansion (FOTE) method, and the trilinear method are considered.
Methods. We define a magnetic field containing fourteen magnetic nulls whose positions and types are known to arbitrary precision.
Furthermore, we applied the selected techniques in order to find and classify those nulls. Two situations are considered: one in which
the magnetic field is discretised on a rectangular grid, and the second in which the magnetic field is discretised along synthetic
“spacecraft trajectories” within the domain.
Results. At present, FOTE and trilinear are the most reliable methods for finding nulls in the spacecraft data and in numerical
simulations on Cartesian grids, respectively. The Poincaré index method is suitable for simulations on both tetrahedral and hexahedral
meshes.
Conclusions. The proposed magnetic field configuration can be used for grading and benchmarking the new and existing tools for
finding magnetic nulls and flow stagnation points.

Key words. methods: numerical – magnetic fields – plasmas – Sun: magnetic fields – planets and satellites: magnetic fields

1. Introduction

Astrophysical plasmas are typically characterised by high mag-
netic Reynolds numbers, and their magnetic fields are found
to exhibit a complex structure on a range of scales. For exam-
ple, observations from missions studying the Earth’s magneto-
sphere (Cluster; Escoubet et al. 2001 and the Magnetospheric
Multiscale (MMS) mission; Burch et al. 2016) show highly
fluctuating fields both in the magnetotail (Fu et al. 2017) and
magnetosheath (Retinò et al. 2007). Extrapolations of the solar
coronal magnetic field based on photospheric magnetograms
similarly show enormous complexity in the magnetic connectiv-
ity between photospheric flux fragments (e.g. Schrijver & Title
2002; Close et al. 2003). In order to understand the detailed
dynamics of such highly complex fields, we need to identify
the features of the magnetic field at which localised energy
conversion – typically mediated by magnetic reconnection –
takes place. Candidates for locations of magnetic reconnection
in complex 3D fields include magnetic nulls (points at which the
magnetic field strength, B, is zero), their associated separatrix
surfaces, and the separator lines that are formed by the intersec-
tions of these separatrix surfaces (for a review, see e.g. Pontin

2012; Priest 2014). Such magnetic nulls have been detected in
spacecraft data from the magnetotail, magnetopause, magne-
tosheath, and foreshock (e.g. Xiao et al. 2006; He et al. 2008;
Deng et al. 2009; Wendel & Adrian 2013; Guo et al. 2016;
Fu et al. 2019; Chen et al. 2017, 2019). In extrapolations of
the solar coronal field they are found in abundance, with the
number of nulls increasing exponentially as the photosphere
is approached (Longcope & Parnell 2009). Moreover, magnetic
reconnection at these nulls has been implicated in energy release
in, for example, solar flares and jets (e.g. Masson et al. 2009;
Yang et al. 2015; Kumar et al. 2019). Being an isolated point,
a magnetic null is not easy to detect in discrete data. This has
motivated the development of methods which infer the existence
of magnetic null points, both in simulations and in spacecraft
data.

Methods for finding topological singularities and other spe-
cial features are becoming increasingly important for researchers
working with huge amounts of simulation and observational
data. A topological analysis is extremely useful for observers as
specific features (e.g. magnetic null points) are likely locations
for energetic events in the Sun or the Earth’s magnetosphere (for
appropriate external perturbations). The same analysis allows
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us to distinguish the important subsets of the huge amounts of
data collected from satellites or telescopes. A topological analy-
sis serves two main purposes when applied to numerical sim-
ulations: It allows the identification and classifications of the
data sets (or simulation sub-domains) of potential interest, and
it could also be used for data compression. Finally, as discussed
above, in both observations and simulations, certain topological
features have very important physical implications and serve as
a framework to understand the physical processes that drive the
observed dynamics.

This paper addresses a subclass of topological analysis tech-
niques, namely the identification of the stagnation points of 3D
vector fields. In the present discussion (around space and astro-
physical plasmas), we mainly discuss the topology of the mag-
netic field. The same analysis, however, is applicable to other
vector fields, such as the flow velocity (Wang et al. 2020), so
long as the field is divergence-free. We designed and undertook a
“challenge” to compare the performance of different null finding
approaches to understand possible deficiencies and weaknesses
of several pieces of software. Limited comparisons were previ-
ously made between different methods (Fu et al. 2020), but they
either did not include as many methods, or they did not include a
“ground truth” in which the exact existence and positions of the
nulls are known (Haynes & Parnell 2007; Eriksson et al. 2015).
Our aim is to understand how the choice of method could pos-
sibly influence the analysis of observations or simulations, and
what are each method’s strengths and weaknesses. We compare
the most popular methods in the literature that can be automated
to quickly analyse many different instances of input data (see
Sect. 3).

2. Theoretical background

2.1. Field structure in the vicinity of a magnetic null

Magnetic nulls are locations in space at which the magnetic field
is zero, and in the generic case this occurs at isolated points.
The structure of the magnetic field in the vicinity of these points
can be characterised by linearising the field about the point. We
note that for any generic (stable) null this linearisation is non-
zero, and the local topology of the field linearisation can be
shown to be the same as the local topology of the field itself –
see Hornig & Schindler (1996). The eigenvalues and eigenvec-
tors of the magnetic field Jacobian ∇B at the null determine
the spine-fan structure of the field, as described in detail in
Fukao et al. (1975), Parnell et al. (1996). Since ∇ · B = 0, the
eigenvalues sum to zero. The eigenvectors associated with the
two same-sign eigenvalues locally define a plane in which mag-
netic field lines approach or recede from the null, known as the
fan surface (or Σ-surface). The remaining eigenvector defines
the direction of the spine line (or γ-line), along which field
lines recede from or approach the null. If the same-sign eigen-
values have negative real parts, the null has topological degree
+1 – in the literature this is sometimes termed either an A-type
null or negative null. If the same-sign eigenvalues have posi-
tive real parts, the topological degree is −1, and we have a B-
type null or positive null. One further pertinent distinction is
between nulls for which all three eigenvalues are real (radial
nulls), and those for which two eigenvalues are complex conju-
gates (spiral nulls). In the latter case, the field lines form a spiral
pattern in the fan surface, and nulls are sometimes denoted as
being of As- or Bs-type (this occurs when a sufficiently strong
component of electric current is present parallel to the spine
line).

Fig. 1. Visualisation of the test magnetic field showing the null points
and associated field line structures, together with the simulated space-
craft trajectories. Null points of topological degree +1 (−1) lie at the
centre of blue (red) spheres and their fan field lines are represented in
cyan (magenta). Spine lines are black. The red, blue, green and gold
curves are the simulated spacecraft trajectories.

2.2. Test field for the challenge

The magnetic configuration used to test the null finding meth-
ods is based on a triply-periodic field that has previously been
used to initiate turbulence simulations (Politano et al. 1995). To
this field various perturbations are added in order to make the
disposition of null points less “regular”. Some of these pertur-
bations take the form of “flux rings”, that are inserted in such
a way as to lead to a pitchfork bifurcation of one of the pre-
existing nulls, leading to the creation of two additional nulls
(as in e.g. Wyper & Pontin 2014). This is done in such a way
that all nulls can be accounted for based on theoretical argu-
ments. Following the addition of the perturbations as described,
the exact null locations can no longer be obtained analytically.
Instead they are obtained using Newton’s method. Since the field
itself is still known analytically, the null location can still be
found to arbitrary precision. Further, since the field is prescribed
analytically, the Jacobian of B can also be calculated exactly at
these points, and thus the topological degree of the null and the
local orientation of the spine line and fan surface can be deter-
mined as above. Details for constructing the magnetic field are
presented in the Appendix A. The null points and their spine
and fan structures are represented within the volume of interest
(x, y, z ∈ [−π/2, 3π/2]) in Fig. 1.

2.3. Data sets used to test methods

The different null finding methods are described in the follow-
ing section. These are designed to be used to find nulls on either
hexa- or tetrahedral meshes of data points (obtained from numer-
ical simulations), or on time-series of quadruplets of measure-
ments (taken by the Cluster or MMS spacecraft). We therefore
generate two different types of data sets from the model magnetic
field. In the first case, we evaluate the magnetic field components
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on a rectilinear grid of points with various different resolutions.
In the second, we define four trajectories through the domain,
evaluating the magnetic field components at a discrete set of
points along these trajectories (see Fig. 1). These points are cho-
sen in each instance to lie at the corners of a regular tetrahedron,
to mimic typical spacecraft configurations. The trajectories are
designed so as to pass close to some of the null points, and fur-
ther from others – see the Appendix A for details. We compare
the results for three different sizes of tetrahedron (corresponding
to different spacecraft separations).

The magnetic field as defined in Appendix A is dimen-
sionless. Particularly in the context of the trajectory data from
hypothetical spacecraft tetrahedra, it is relevant to compare with
physical length scales. One possible dimensionalisation would
be to consider our domain to be equivalent to the largest fully-
kinetic simulations afforded by present-day codes and supercom-
puters, since these were recent data sets on which null finders
were applied. Those simulations consider domains extending for
tens of ion inertial lengths di (Pucci et al. 2017; Olshevsky et al.
2018). If we suppose that the domain size is 20 di in each
dimension, then our “small-scale” and “medium-scale” tetrahe-
dra have spacecraft separations of 0.13di and 0.63di, respec-
tively. The inter-spacecraft separation of the MMS constel-
lation can change between 5−80 km which corresponds to
0.005−0.08di in the magnetotail, and 0.05−0.8di in the mag-
netopause. Hence, our “small-scale” tetrahedron aims at resem-
bling the electron diffusion region scales covered by the MMS
mission. The inter-spacecraft separation of the Cluster mission
varies 200−2500 km, resembling 0.2−2.5di in the magnetotail,
and 2−25di in the magnetopause. This larger separation – of
the order of the ion diffusion region – dictates the choice of the
“medium” and “large” scales for our study.

3. Methods

This section describes the three methods that we have compared,
their theoretical formulation and implementation.

3.1. Poincaré index method

3.1.1. Theoretical formulation

The problem of locating a magnetic null is essentially a problem
of finding a root of a continuous divergence-free vector field. The
Poincaré index or topological degree method for finding such
roots was introduced by Greene (1992). This technique has been
applied to various kinetic simulations by Olshevsky et al. (2015,
2016) and spacecraft observations by Eriksson et al. (2015),
Xiao et al. (2006). The key assumption of the method consists
in the linearity of the field around a null, therefore a field in the
neighbourhood of the null is given by

Bi = (∇B)i j

(
x j − x j0

)
, (1)

where the summation is implied over repeating indices, x j0
denote the coordinates of the null, and (∇B) = ∂Bi/∂x j|x j=x j0
is the magnetic field gradient, a 3 × 3 matrix constant. The topo-
logical degree of the field in the specified volume of space is
represented by the following sum over all nulls

D =
∑

k

sign [λ1kλ2kλ3k] , (2)

where λ1k,2k,3k are the eigenvalues of the ∇B at the kth null. As
mentioned above, in the generic case nulls do not degenerate (in

reality they can be degenerate only at one instant of time during a
bifurcation process), and all three eigenvalues are non-zero. The
implication of this fact is that magnetic nulls are isolated. As the
topological degree is strongly conserved, it provides a measure
of the difference between the number of positive and the number
of negative nulls in the given volume of space. If the volume of
space is sufficiently small, one can assume it encloses exactly
one null if D , 0.

The topological degree over a region of space can be eval-
uated from the field on the surface which encloses this region
of space. Typically the magnetic field is given at the vertices of
a cell, either hexahedral or tetrahedral. Each face of the cell is
split into triangles (see Fig. 8c in Fu et al. (2015)), and the field
in the centre of each triangle is interpolated from its corners. In
this way, we translate from the “configuration space” into the
“magnetic field space”. To find out if the cell’s surface encloses
a null of the magnetic field, each triangular face is mapped onto
a unit sphere in the magnetic field space. The area of each tri-
angle’s projection on the unit sphere is given by the solid angle
subtended by the three magnetic field vectors. The sum of the
areas of all triangles (4 for tetrahedron and 12 for hexahedron),
divided by 4π, gives the number of times the triangles cover a
unit sphere in the magnetic field space. This is the sum of the
signs of all the nulls of the field inside the sphere (see Eq. (2)).
We note that each area has a sign, and it is important to observe
the order of vertices in the triple cross product B1 ·B2×B3 to get
the sign correctly. The “plus” sign corresponds to the outward
directed flux, while the “minus” refers to the inward field flux.

For our implementation of the Poincaré index method we
use the formula for the solid angle subtended by three vectors
proposed by van Oosterom & Strackee (1983):

tan
(

1
2

Ω

)
=

B1 · B2 × B3

B1B2B3 + (B1 · B2) B3 + (B1 · B3) B2 + (B2 · B3) B2
.

(3)

Evaluation of the solid angle this way is faster and more stable
than the conventional use of the Cosine theorem. In particular,
there is no need for zero-denominator checks when using mod-
ern programming languages, as errors are handled by the arctan2
function.

Once a cell which encloses a null is found, it is possible to get
a more precise estimate of the null location inside this cell using
the Secant theorem (Greene 1992). However, as noted by Greene
(1992), this estimate may often be misleading, even giving loca-
tions outside the cell. Our experiments confirmed this problem,
therefore it is more practical to assume the null is located in the
centre of mass of the cell.

The topological classification of a null is straightforward on
hexahedral cells where finite differences can be used to deduce
the magnetic field Jacobian. A technique for ∇B computation in
tetrahedral cells is given in Khurana et al. (1996).

3.1.2. Implementation

The null-finder based on the Poincaré index method1 combines
magnetic field measurements into a set of either 4 or 8 magnetic
field vectors given in the vertices of a cell. It computes the topo-
logical degree and returns either a very small number close to
zero (meaning no null is present inside the cell), or a number
close to 1 or −1, meaning there is a null inside the cell. In prac-
tice, the thresholds of being “close to zero” or “close to one” are

1 https://bitbucket.org/volshevsky/
magneticnullchallenge
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regulated by the numerical precision. Similarly to the trilinear
method described in Sect. 3.2, only those grid cells are selected
for analysis, in which none of the components of the magnetic
field have the same sign at all vertices (this being incompatible
with the existence of a null in the cell). If at least one component
of the magnetic field has the same sign in all the vertices, the
field can’t go to zero inside this cell (in the linear approxima-
tion). This pre-selection reduces the computation cost dramati-
cally in a typical simulation or observation, where only a fraction
of measurements comprise field nulls.

3.2. Trilinear method

3.2.1. Theoretical formulation

The trilinear method for finding the locations of null points
in a numerical grid under the trilinear assumption was orig-
inally formulated by Haynes & Parnell (2007). The algorithm
described below differs from Haynes & Parnell (2007) by using
a deca-section method (like the bisection method) rather than
Newton-Raphson method for converging on the location of the
null points. There are three stages to the method: the reduction
stage, bilinear stage and the sub-grid stage.

The reduction stage just reduces the amount of work done
by the algorithm in the bilinear stage. Each grid cell is checked in
turn for a change in sign in the magnetic field. Essentially, a grid
cell cannot contain a null point under the trilinear assumption
if all 8 values of the grid cell vertices are of the same sign (see
above).

The bilinear stage actually checks for the possibility of a
null point within a grid cell. The zero isosurfaces (Bi = 0) of
the three components of the magnetic field will intersect at a
null point if a null exists. This triple intersection is difficult to
find directly numerically. However, two of the three components
of the magnetic field’s zero isosurfaces will intersect to form a
line which the null point must lie on. This line must also inter-
sect with the grid cell faces. The magnetic field on these grid
cell faces is now only bilinear and therefore the locations of the
intersection points of this line and the cell faces (say P1 and P2)
can be found analytically. The values of the third component of
the magnetic field (unused to form the line) can be found at P1
and P2: if a null point exists, then this third magnetic field com-
ponent must be of opposite signs at P1 and P2. By using this
test, the algorithm can detect which grid cells may contain null
points.

The final, sub-grid stage is simply the first two stages which
are repeated at sub-grid cell resolution to identify the locations
of the null points at the required accuracy. Each null-containing
grid cell is split into a new grid of 10 × 10 × 10 cells where
the magnetic field values are found using the trilinear assump-
tion and the reduction and bilinear methods are applied to these
smaller grid cells. This process of splitting each cell is repeatedly
applied until the desired accuracy in the location is obtained.

The methods used for detecting the sign of the null points use
a convergence-style method. They are fully detailed in Williams
(2018). A field line about a null point can be written as

r(s) = a1eλ1 se1 + a2eλ2 se2 + a3eλ3 se3 (4)

where λi and ei are the corresponding eigenvalues and eigenvec-
tors of M = ∇B evaluated at the null point and ai are constants.
By repeated multiplication of Eq. (4) by M (and assuming that
λ1 is the eigenvalue corresponding to the eigenvector associated

with the spine line), we obtain

Mn · r(s)→ a1λ
n
1eλ1 se1. (5)

This allows the eigenvector associated with the spine line to be
identified. This convergence is used by the Sign Finder to clas-
sify the signs of the null points. This also identifies the eigen-
vectors associated with the fan plane. However, the Sign Finder
does not find any of the values of eigenvalues of the null point or
identify if it is a spiral null point. If this information is desired,
it must be found by an alternative method.

3.2.2. Implementation

The algorithm for finding null points using the trilinear method
is implemented in the Magnetic Skeleton Analysis Tools. It is a
Fortran based package for analysing the skeleton of divergence-
free vector fields2.

3.3. FOTE method

3.3.1. Theoretical formulation

The first-order Taylor expansion (FOTE) method is based on
Taylor expansion of the magnetic field in the vicinity of a null
(Fu et al. 2015):

B (r) = ∇B (r − r0) , (6)

where ∇B is the Jacobian matrix derived from four-point mea-
surements, r0 is the location of one of the four spacecraft, r is the
location of interest, and B (r) is the magnetic field at the location
of interest. Requiring B (r) = 0 and inverting this linear expan-
sion (Eq. (6)), we can obtain the null position r. In general, the
equation will always give a position of a magnetic null, if the
four spacecraft do not measure exactly the same magnetic field,
which is impossible in observations or simulations where instru-
mental or numerical noise is inevitable. However, we only regard
the null as reliably identified if (1) the null-spacecraft distance
(r − r0) < di, (2) the following dimensionless error parameters
are both smaller than 0.4:

η =

∣∣∣∣∣ ∇ · Bmax(∇B)

∣∣∣∣∣ ,
ζ =

∣∣∣∣∣ λ1 + λ2 + λ3

max(|real(λ)|)

∣∣∣∣∣ , (7)

where where λ1, λ2, and λ3 are the eigenvalues of the Jaco-
bian matrix ∇B. The quantitative criteria for qualifying FOTE
are derived from the comprehensive tests of the simulation data
(Fu et al. 2015).

3.3.2. Implementation

The algorithm for finding null points and identifying their type
using the FOTE method is implemented in Matlab. The time-
series quadruple data are used in such test. At each sampling
point, a null point position relative to the spacecraft is calcu-
lated by Eq. (6). Since the spacecraft trajectories generated arti-
ficially are given, a null point location in the spatial domain can
be obtained.

As we have introduced, owing to the linear assumption, the
identification of a remote null point is not reliable. Thus, we set a
threshold distance. Only the magnetic nulls below such threshold
distance are further evaluated.
2 https://github.com/benmatwil/msat
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3.3.3. FOTE and SOTE methods

FOTE method has shown great powers in automatic null detec-
tion. However, the FOTE method requires the magnetic fields
around the spacecraft to be quasi-linear, so that its accuracy is
reduced when dealing with strongly non-linear magnetic fields.

Recently, a new method entitled “Second-Order Taylor
Expansion” (SOTE) was proposed by Liu et al. (2019) to over-
come the linear limitation. This method is based on the second-
order Taylor expansion of the magnetic field

B (x, y, z, t) = ax+ by+ cz+ dxy+exz+ fyz+ lx2 + my2 + nz2 + B0,

(8)

where a, b, c, d, e, f , l, m, n, and B0 are vector coefficients. The
following constraints can be applied to these equations: ∇ · B =
0 and ∇ × B = uJ, where the current density is derived from
particle moments: J = ne (Vi − Ve). To completely determine
all the coefficients in Eq. (8), the SOTE method utilises two sets
of four-point measurements of magnetic field and particles, by
assuming the structures to be quasi-stationary and solving the
precise trajectory of the spacecraft.

The SOTE method is good at reconstructing non-linear struc-
tures, for example, the null-point pairs in this study. Thus, it
enables the analysis of null-point pairs in space plasmas. How-
ever, for null point detection, the SOTE method should have the
same performance as FOTE method since the FOTE reconstruc-
tion is essentially a local approximation of SOTE reconstruction.
What’s more, the SOTE method cannot be applied to a time-
varying structure while the FOTE method could reveal the tem-
poral evolution of a magnetic structure.

4. Results

The methods considered here can be broken down into two cat-
egories: Some methods are designed to take eight data points as
input (meaning 24 data values when the three component of B
are included), motivated by the need to find magnetic nulls in
simulation data utilising rectilinear grids of points. Both the Tri-
linear and Poincaré methods have been applied previously in this
way. By contrast, other methods were developed to find nulls in
data from the four-spacecraft missions, Cluster and MMS, and
therefore take as input the magnetic field components measured
at four points in space: the FOTE and Poincaré index methods
were used in this context. In the following sections we consider
these two cases separately.

4.1. Results for eight-point methods

4.1.1. Results of the Poincaré index method

In Fig. 2 we plot the locations of nulls found when the magnetic
field is evaluated on equally-spaced grids with resolutions 203,
303, and 803. We see that the detection and location of some
of the nulls is relatively stable between the different resolutions,
while other null detections exhibit large differences for the dif-
ferent resolutions. The null points detected at 203 and 803 reso-
lution are listed in Table 1. This is discussed further below.

4.1.2. Results of Trilinear method

Figure 3 illustrates a typical output of the magnetic skeleton
analysis and application of the trilinear method to a 803 grid.
Table 1 shows the results by using the trilinear method to find

Fig. 2. Locations of magnetic nulls found by the Poincaré index method
for different grid resolutions. Cubic boxes outline the grid cells where
nulls are detected in the 203 grid (larger boxes), 303 grid (smaller
boxes). Colour spheres show the nulls found in the 803 grid. Colour
denotes the topological type of the null as described in the legend.

the locations of the null points in the test magnetic field on dif-
ferent resolution grids. In the 203 grid, the trilinear method only
finds 12 null points and is only able to classify 11 of these. It can-
not locate two of the 14 null points which exist in the analytical
field.

More closely analysing the unclassified null point reveals
that, under the trilinear assumption, this point is represented by
a sink with the field lines twisting into the point (Fig. 4). How-
ever, it turns out that when the magnetic field is evaluated on
a grid with 303 resolution, this point is revealed to be a true
divergence-free null point (Fig. 4). There is clearly just a res-
olution issue and the vector field is not approximately trilinear
locally to this null point at 203 resolution.

The two null points which cannot be located in the 203 grid
are actually located within the same grid cell at 203 resolution.
From analysis in the higher resolution grids (where these two
null points are now located in different grid cells), we find one
of these null points is positive and the other is negative. Since
this pair of null points comprises both a positive and a negative
null point, together they have a topological degree of zero and so
they cannot be found when in the same grid cell.

At 303 resolution, all 14 null points are now found using
the trilinear method. However there is still one null which the
algorithm is unable to classify. The exact same change as above
occurs with null point 12 between 303 and 403 resolution. The
field lines around null point 12 show that it appears to be a source
in the trilinear approximation at 303 resolution and becomes a
negative divergence free null point at 403 resolution. At 403 res-
olution and higher, all 14 null points are found and classified
correctly.

4.1.3. Comparison between Poincaré index and trilinear
methods

The null point locations and types for the Poincaré index and
trilinear methods are compared to the true values in Table 1.
Before comparing these results it is worth making some impor-
tant notes. First, the trilinear method as currently implemented
does not distinguish spiral nulls, since it does not make use of
the Jacobian matrix eigenvalues to determine the null type (see
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Table 1. Comparison of nulls locations and types obtained using the trilinear and Poincaré index methods to the true locations and types, for two
different grid resolutions.

Null # Type x y z Type x y z Type x y z

203 Trilinear Poincaré Exact (2 d.p.)

1 B 0.30 −0.25 −1.49 − − − − Bs 0.30 −0.25 −1.48
2 A 0.04 −0.00 −0.01 As −0.08 −0.08 −0.08 As 0.05 0.00 −0.01
3 A 2.90 −0.16 −0.57 A 2.89 −0.41 −0.41 A 2.87 −0.19 −0.60
4 0 2.95 −0.17 0.17 As 2.89 −0.08 −0.08 Bs 2.97 −0.15 0.22
5 A 3.29 0.10 0.40 As 2.89 −0.08 0.25 As 3.23 0.06 0.25
6 B −0.20 3.31 0.42 − − − − Bs −0.21 3.32 0.44
7 B −0.28 0.25 1.26 Bs −0.41 0.25 1.24 Bs −0.27 0.24 1.25
8 A 3.14 3.14 −0.04 A 3.22 3.22 −0.08 A 3.14 3.13 −0.04
9 A 0.02 −0.02 3.22 As −0.08 −0.08 3.22 As 0.02 −0.02 3.21
10 − − − − − − − − Bs 3.32 0.15 2.99
11 A −0.00 3.14 3.17 As −0.08 3.22 3.22 As −0.00 3.14 3.17
12 − − − − − − − − As 3.31 0.15 3.25
13 B 2.95 −0.13 3.61 Bs 2.89 −0.08 3.55 Bs 2.99 −0.10 3.50
14 B 3.02 3.01 3.38 B 2.89 2.89 3.22 Bs 3.02 3.02 3.39
− − − − − Bs 2.89 −0.08 −0.41 − − − −

803 Trilinear Poincaré Exact (2 d.p.)
1 B 0.30 −0.25 −1.48 Bs 0.30 −0.26 −1.45 Bs 0.30 −0.25 −1.48
2 A 0.05 −0.00 −0.01 As 0.06 −0.02 −0.02 As 0.05 0.00 −0.01
3 A 2.86 −0.19 −0.60 A 2.84 −0.18 −0.58 A 2.87 −0.19 −0.60
4 B 2.98 −0.15 0.23 B 3.00 −0.18 0.22 Bs 2.97 −0.15 0.22
5 A 3.23 0.06 0.25 As 3.24 0.06 0.22 As 3.23 0.06 0.25
6 B −0.21 3.32 0.44 Bs −0.18 3.32 0.46 Bs −0.21 3.32 0.44
7 B −0.27 0.24 1.25 Bs −0.26 0.22 1.25 Bs −0.27 0.24 1.25
8 A 3.14 3.13 −0.04 A 3.16 3.16 −0.02 A 3.14 3.13 −0.04
9 A 0.02 −0.02 3.21 As −0.02 −0.02 3.24 As 0.02 −0.02 3.21
10 B 3.32 0.15 3.00 Bs 3.32 0.14 3.00 Bs 3.32 0.15 2.99
11 A −0.00 3.14 3.17 As −0.02 3.16 3.16 As −0.00 3.14 3.17
12 A 3.31 0.15 3.24 As 3.32 0.14 3.24 As 3.31 0.15 3.25
13 B 2.99 −0.10 3.51 Bs 3.00 −0.10 3.48 Bs 2.99 −0.10 3.50
14 B 3.02 3.02 3.39 Bs 3.00 3.00 3.40 Bs 3.02 3.02 3.39

above). In principle this could be done in the same way as for the
Poincaré method (taking finite differences over the grid to eval-
uate the Jacobian matrix). Second, the Poincaré index method as
currently implemented does not seek the nulls at sub-grid reso-
lution, thus the centre of the cell is reported as the null location.
By contrast, the trilinear method fits a field to the data, with the
null point of this fitted field within the cell being reported.

With the above in mind we can compare the nulls found by
the two methods, in Table 1. First, we see that at 203 resolu-
tion, both methods are imperfect. The trilinear method misses
two nulls (10 and 12 – though note that as mentioned above
these exist in the same grid cell at this resolution), while one
fails the classification process. The Poincaré index method per-
forms a little worse: in addition to the two nulls missed by the
trilinear method, nulls 1 and 6 are also not found, while there is
a false-positive null as well (bottom row of the table). The prob-
lematic null 4 is again wrongly classified, while the spiral nature
of null 14 is not picked up.

At 803 resolution both methods show much better results,
as expected. Both methods find all 14 nulls, with only null 4
wrongly classified by the Poincaré index method (again as B
rather than Bs). As a result of the fact that the field is fitted on
the grid allowing some sub-grid resolution to the null detection,
the trilinear method generally gives a more accurate estimate of
the null point location.

Fig. 3. 3D rendering of the magnetic field obtained using the trilinear
method and associated Magnetic Skeleton Analysis Tools, for 803 reso-
lution. Positive and negative null points are represented as red and blue
spheres respectively, spine lines from positive and negative null points
are represented as thick red and blue lines respectively and the field
lines originating from the fan planes of positive and negative null points
are drawn as thinner red and blue lines respectively.
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Fig. 4. Illustration of the effect of different grid resolution for the recon-
structed magnetic field structure using the trilinear method. The mag-
netic field in the vicinity of the same null point is reconstructed from
the 203 grid data (left) and the 303 grid data (right). The reconstructed
field structure changes from a sink to a divergence-free null point when
the resolution is increased. Red and orange field lines are traced in the
forward and backward direction, respectively, of the magnetic field.

Table 2. FOTE method applied to measurement along trajectories.

Index Type x y z |R|
Medium-scale: S = 0.12 Nulls found: 14

1 X 2.9372 −0.1778 0.1631 0.1294
2 A 3.1385 3.1349 −0.0326 0.1282
3 B 3.3098 3.5301 2.8745 0.6195
4 B 3.3493 2.9556 2.9583 0.9480
5 O −0.1163 3.1190 0.1774 0.5218
6 O 0.0454 −0.0002 −0.0109 0.0276
7 O 4.1302 0.8054 1.7989 1.7318
8 O −0.0011 3.1369 3.1722 0.0726
9 O 0.0184 −0.0149 3.2124 0.1574
10 As 3.1649 3.1176 −0.0065 0.4102
11 As 3.2514 0.0774 0.2758 0.2669
12 Bs 4.0884 0.7715 1.7469 1.6891
13 Bs −1.0344 1.1210 1.3510 1.6635
14 Bs 3.3374 0.1237 2.6662 0.3175
Small-scale: S = 0.025 Nulls found: 10
1 X 2.9668 −0.1497 0.1298 0.1408
2 A 3.1386 3.1344 −0.0320 0.1974
3 B 3.4131 3.5137 2.6837 0.7573
4 B 3.0098 3.0167 3.4307 0.5873
5 O −0.1291 3.1253 0.2019 0.6016
6 O 0.0457 −0.0005 −0.0104 0.0898
7 O −0.0006 3.1376 3.1733 0.1556
8 O 0.0197 −0.0166 3.2153 0.2312
9 As 3.1832 3.1089 0.0113 0.5680
10 Bs 3.2822 0.1041 2.8751 0.2343

Notes. The final column ( |R|) gives the closest approach of the centre
of the tetrahedron to the null.

4.2. Results for four-point methods

4.2.1. Results of FOTE method

Table 2 shows the results of the FOTE method testing on null
point location and identification. The types, coordinates and
minimum distances to spacecraft of these null points are given.

In the “medium-scale” tetrahedron configuration, the space-
craft separation is about 0.12 in dimensionless units. Consid-
ering the linear assumption, the null points with the distance
(from the tetrahedron centre) less than 1 are reserved. In total,
we detected 14 null points, in which the null points 1, 2, 5, 6, 8,
9, 11, and 14 are included in Table 2 and thus are real null points.
The others are misidentifications, generally with large distances
(see null points 4, 7, 12, 13). This is consistent with the proper-
ties of FOTE method. Six real null points (null points 1, 3, 7, 12,
13, and 14 in Table A.2) are missed in the test. Among the missed
null points, nulls 1 and 7 (see Table A.2) are located rather far
from the spacecraft trajectory, and thus cannot be detected. Null

points 12 and 13 are close to each other (relative to the spacecraft
separation), possibly breaking the linearity of the field in their
vicinity. This explains why these null points are not detected by
FOTE method.

In the “small-scale” tetrahedron configuration, the space-
craft separation is about 0.025. The null points with the dis-
tance less than 0.5 are reserved. In total, we detected 10 null
points, in which the null points 1, 2, 6, 7, 8, 10 are included in
Table 2 and thus are real null points. We note that the null points
which are successfully identified by FOTE method are always
with the distance less than 0.25, while the misidentifications are
with the distances larger than 0.5. This means we could conve-
niently improve the credibility of FOTE method by decreasing
the threshold distance.

The null point detections for the two different tetrahedron
sizes are shown graphically in Fig. 5, where the exact answer is
also plotted in the top panel. In the fourth panel of the Figure
we also show the result of applying FOTE to an even larger
tetrahedron, for comparison with the Poincaré index method (see
below).

One conclusion (which is expected because of the linear-field
assumption in the method) is that the FOTE method performs
well when the null point is not too close to any other nulls (say,
on the scale of the tetrahedron), such as nulls 8 and 9. While in
the places where two nulls are relatively close together, such as
nulls 4 and 5, the null type detection is rather erratic.

There is no clear trend regarding the accuracy of null detec-
tions with tetrahedron size. However, it is clear that very large
and very small tetrahedron sizes are both bad: when the tetrahe-
dron is very large the field can be far from linear, with many nulls
in the local region. On the other hand if it is very small, the field
gradient is not well sampled, and nulls can be missed because
they pass far from the spacecraft on the length-scale of the tetra-
hedron (and it is known for FOTE from previous experience that
for reliable results we should exclude null detections more than
a few times the spacecraft separation, e.g. Fu et al. 2020). The
optimal balance, therefore, is to have a spacecraft separation of
order the null separation, but this is not known a priori. In the
absence of such knowledge, the optimal size of the tetrahedron
can be motivated by some known physical length scales, such as
the ion inertial length.

4.2.2. Results of Poincaré index method

With the “small-scale” and “medium-scale” tetrahedron config-
urations described above, the nulls never pass exactly through
the spacecraft tetrahedron. Therefore, to test the Poincaré index
method we have created trajectories with a “large-scale” tetrahe-
dron (see the Appendix), to ensure the possibility of (true) pos-
itive results. The results of applying the Poincaré index method
to this data set are shown in the bottom panel of Fig. 5. We
observe that all nulls that happen to be enclosed by the artifi-
cial spacecraft constellation, namely the nulls 8, 2, and 11, have
been correctly identified. We have found that, in accordance with
Greene (1992), the Secant method provides a bad estimate of the
enclosed null location, often outside the tetrahedron. Therefore,
the best practice is to provide the centre of the tetrahedron as the
location of the null point.

4.2.3. Comparison between FOTE and Poincaré index
methods

As expected, the FOTE method is able to detect the nulls when
they are some distance away from the tetrahedron. Moreover,
FOTE detects a null feature in all cases where the null point
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Fig. 5. Null points detected based on the simulated spacecraft trajecto-
ries as described in Appendix A. In the top panel is the exact distance
from the centre of the spacecraft tetrahedron to the nearest null (|R|), its
type, and its number based on Table A.2. The second, third and fourth
panels show the results from the FOTE method with a tetrahedron with
S = 0.025, S = 0.12, and S = 0.4, respectively. The bottom panel
shows the results of applying the Poincaré index method for the large-
scale tetrahedron with S = 0.4.

comes within a distance of 1 from the tetrahedron centre, for all
tetrahedron sizes tested. The accuracy of the distance and null
type assessment tends to degrade for larger tetrahedron sizes, as
expected. The Poincaré index method also detects all nulls that
could be expected (those that pass through the tetrahedron). The
two methods for assessing the type of the null perform similarly,
with success rate around 50%. When multiple nulls are located
close together (e.g. nulls 4 and 5), or too far from the spacecraft
(in case of FOTE), both methods detect the presence of nulls, but
show noisy results in detection/distance/typing.

4.2.4. Tetrahedron trajectory considerations

The results discussed above are based upon data measured along
trajectories that traverse a circular path in the xy-plane of our
domain. Clearly these trajectories do not mimic the behaviour
of spacecraft constellations such as Cluster or MMS, which for

example in the magnetotail move only slowly as magnetic struc-
tures are convected backwards and forwards past them. How-
ever, we do not expect the nature of these trajectories to influence
the results. The shape of the trajectories is chosen to bring them
close to as many of the null points in the domain as possible, in
order to test the field reconstruction around each of those nulls,
and thus make our analysis more robust. The null point identifi-
cation is not affected locally by the shape of the trajectory (since
only the data at a single time – or two adjacent times for SOTE –
is used), but rather by the separation of the ‘spacecraft’. In order
to mimic the effects of small-scale fluctuations in the fields and
noise, we added the small-scale fluctuations to the trajectories in
Eqs. (A.3)–(A.5).

5. Conclusion

This work intends to help researchers who want to analyse null
points (stagnation points) of divergence-free vector fields in their
simulations or observations. There are two situations that are
commonly encountered in practice: (i) numerical simulations on
hexahedral or tetrahedral meshes, and (ii) data from tetrahedra of
spacecraft (MMS and Cluster). Each of these cases was assessed
independently using the same test magnetic field. This is the first
time that such methods have been tested and compared against
a “ground truth” situation where null numbers, positions, and
types were known to arbitrary precision based on an analytical
expression for the magnetic field. The main results of our study
relevant to “8-point methods” used for rectangular meshes from
numerical simulations are the following.

– When the field is moderately resolved (1,2, or fewer grid
points between nulls), both the Poincaré index (PI) and trilin-
ear methods give errors, but the trilinear method has no false
positives (PI method has 1), fewer false negatives (2 vs 4),
and the performance on null type is the same (one incorrect
A vs B identification each). This suggests that the trilinear
method is more robust when the field is quite “rough” on the
grid.

– When the field is well resolved, (>2 grid points between
nulls) both methods identify all nulls and their types cor-
rectly. Since the trilinear method finds the nulls to sub-grid
resolution it gets the positions more accurately. The trilin-
ear method does not inherently detect spiral nulls, but could
do so by finding Jacobian of the trilinear fit and calculat-
ing eigenvalues. The PI method could include an extra step
where the fit is made (e.g. trilinear) to get sub-grid resolution
of null position.

– Both methods can be efficiently implemented to run in less
than 1 second on an 803 grid for the present test field, and
show no substantial difference in scaling with resolution.

Concerning 4-point methods typically applied to spacecraft data,
we have considered three different sizes for the spacecraft tetra-
hedron, the smallest two of which can be considered as “Cluster-
scale” and “MMS-scale” on the basis of a physically-motivated
dimensionsalisation of the field – see Sect. 2.3. We conclude
that FOTE performs well in finding the nulls when they are not
close together – roughly speaking, when the null separation is
larger than the null-spacecraft distance. (The main discrepancies
in Figure 5 are the use of X and O for nulls that are close to
2D). On the other hand, for null pairs that are close together the
detection method fails (interestingly it still detects a null, but the
inferred type jumps around a lot). Probably this could be used to
indicate multiple adjacent nulls.

The practical advice is to use the FOTE method for locat-
ing the nulls in the fields measured by probes or spacecraft.
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In the numerical simulations on the rectilinear grids the trilin-
ear method gives more accurate null location. For other mesh
geometries one should use a variation of the PI on either hexahe-
dral or tetrahedral cells. The null location produced by the latter
should be taken in the middle of the cell as the secant method of
the location estimation could produce unreliable results.

6. Discussion

We propose that the fields defined in the appendix and used here
could be used to test/benchmark future null finders. For example
a method based on an expansion in spherical harmonics used by
(He et al. 2008; Li 2019). The original intention of this method
is to reconstruct magnetotail magnetic structure around magnetic
null observed by local satellite (He et al. 2008; Guo et al. 2016).
Based on satellite measurements, it reconstructs the magnetic
field by taking advantage of a fitting function approach. To match
the 12 observed magnetic field components, 10 fitting parame-
ters are presented in 10 spherical harmonic functions, and the
other two are in the Harris current sheet model (Harris 1962).
Thus, by fitting the simultaneous magnetic field vectors, one can
reconstruct the local magnetic field. The calculations in He et al.
(2008) confirmed the existence of a magnetic field null in recon-
nection event, and present a magnetic structure around a 3-D null
in the magnetotail. For convenience, we provide the theoretical
formulation of this method in Appendix B.

In order to apply this method, four point measurements are
required in the data cube. Any four points that form a tetrahe-
dron in the data box introduced in Sect. 2 can be used for recon-
struction experiments. For example, in a 803 size data box, one
can first choose a 23 data box, and separate it as five indepen-
dent tetrahedrons. Then five reconstructions can be done based
on the tetrahedrons. The following is to check for magnetic
nulls in these reconstructed magnetic structures. The advantage
is that it can be reconstructed to get multiple nulls, while other
methods can’t judge the existence of multiple zeros in the area
surrounded by multiple satellites. Multiple tetrahedrons can be
randomly selected for reconstruction, and the results obtained
together with all data points can be compared. However, it would
be less efficient if it is used as an ergodic calculation similar
to the Poincaré index. Also the results of the magnetic nulls
need to check the reconstructed magnetic structures manually,
which need to be further improved in the future. Once the auto-
mated procedure for inspecting and classifying the reconstruc-
tion results is developed, this method can be tested against the
proposed challenge.
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Appendix A: Details of the test magnetic field

The magnetic field model used in this paper is
B = (−2 sin(2y) + sin z)ex + (2 sin x + sin z)ey + (sin x + sin y)ez

+ 0.04(−2 sin(2y) + 2 sin x cos z + sin(y) + 0.1195)ex

+ 0.04(2 sin(x − z) + sin(x + z) +
√

30/7)ey

+ 0.04(−2 cos x sin z + sin(y) + 2 sin(2y) − 0.1378162)ez

+

2∑
i=1

∇ ×

aiki exp
− (x − Xi)2 + (y − Yi)2

a2
i

−
(z − Zi)2

l2i

 ez


+

5∑
i=3

∇ ×

aiki exp
− (x − Xi)2 + (z − Zi)2

a2
i

−
(y − Yi)2

l2i

 ey


+

7∑
i=6

∇ ×

aiki exp
− (y − Yi)2 + (z − Zi)2

a2
i

−
(x − Xi)2

l2i

 ex


(A.1)

where the values of ai, ki, li, Xi, Yi and Zi are given in Table A.1.
The simulated spacecraft trajectories are constructed as fol-

lows. First, a trajectory for the tetrahedron centre is defined. A
parametric representation of this curve is given by

r(s) =

(
π
√

2
cos(s) +

π

2
+ 3 f1(s) + 0.1

)
ex

+

(
π
√

2
sin(s) +

π

2
+ 3 f2(s)

)
ey

+

(
(1 − 0.025s)

π

2
tanh(8s) +

π

2
+ 3 f3(s)

)
ez (A.2)

where

f1(s) = 0.01 sin (20 s + 23) + 0.004 sin (23 s + 17)
+ 0.011 sin (13 s + 5) + 0.007 sin (37 s + 13) (A.3)

f2(s) = 0.01 sin (19 s + 23) + 0.005 sin (25 s + 17)
+ 0.009 sin (17 s + 5) + 0.013 sin (33 s + 13) (A.4)

f3(s) = 0.007 sin (22 s + 23) + 0.006 sin (24 s + 17)
+ 0.01 sin (13 s + 5) + 0.003 sin (39 s + 13) (A.5)

Next, four constant vectors are added to this expression to deter-
mine four neighbouring trajectories for the four spacecraft:

V1 = S
√

3(0.28881225ex + 0.40784216ey + 0.28911173ez),

V2 = S
√

3(−0.07797703ex − 0.45912701ey + 0.34125548ez),

V3 = S
√

3(−0.51329368ex + 0.20729668ey − 0.16398482ez),

V4 = S
√

3(0.30245845ex − 0.15601183ey − 0.46638238ez).

These vectors lie at the corners of a regular tetrahedron, with
each point lying a distance S from the centre of the tetrahedron
(which has side-length, or spacecraft separation, S

√
8/3). Here

we consider three different tetrahedron sizes, with S = 0.025,
S = 0.12 and S = 0.4, which we refer to as “small-scale”,
“medium-scale” and “large-scale”, respectively.

The null points within the domain together with the eigen-
values of the associated Jacobian matrix are given in Table A.2.

Table A.1. Parameter values for the magnetic field in Eq. (A.1).

i ai ki li Xi Yi Zi

1 −0.2 50 0.2 2.8455 0.0267 −0.147
2 −0.3 4 0.2 π + 0.191 0.0117 π
3 1 0.8 1 0.1 π − 0.037 0.2
4 −0.22 1 0.9 π + 0.0771 π + 0.087 π
5 −0.22 2 0.5 π/2 π/2 π/2
6 1 1 1 0.073 0.0198 −0.07
7 −0.22 2 0.5 π/2 π/2 π/2

Table A.2. Null points in the domain and the associated eigenvalues – exact values.

Index Type x y z λ1 λ2 λ3

1 Bs 0.2952 −0.2505 −1.4803 −0.7018 0.3509 + 2.3321 j 0.3509 − 2.3321 j
2 As 0.04581 −0.0005391 −0.01064 0.8959 −0.4479 + 3.3971 j −0.4479 − 3.3971 j
3 A 2.8657 −0.1878 −0.5961 4.8311 −0.8373 −3.9938
4 Bs 2.9737 −0.1500 0.2246 −8.0909 4.0454 + 1.4497 j 4.0454 − 1.4497 j
5 As 3.2286 0.06090 0.2457 2.9331 −1.4666 + 1.3798 j −1.4666 − 1.3798 j
6 Bs −0.2124 3.3212 0.4444 −0.6310 0.3155 + 3.1129 j 0.3155 − 3.1129 j
7 Bs −0.2728 0.2386 1.2466 −0.8733 0.4367 + 2.1948 j 0.4367 − 2.1948 j
8 A 3.1391 3.1344 −0.03510 2.9710 −0.8713 −2.0998
9 As 0.01951 −0.01637 3.2123 0.2230 −0.1115 + 3.1491 j −0.1115 − 3.1491 j
10 Bs 3.3225 0.1453 2.9898 −0.3269 0.1635 + 13.3803 j 0.1635 − 13.3803 j
11 As −0.0017705 3.1360 3.1707 0.7427 −0.3713 + 2.9089 j −0.3713 − 2.9089 j
12 As 3.3119 0.1539 3.2509 0.4726 −0.2363 + 17.6743 j −0.2363 − 17.6743 j
13 Bs 2.9915 −0.09684 3.5047 −2.6941 1.3470 + 0.9660 j 1.3470 − 0.9660 j
14 Bs 3.0203 3.0182 3.3935 −4.00896 2.0449 + 0.8020 j 2.0449 − 0.8020 j
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Appendix B: Spherical expansion method
formulation

The fitting model is designed based on a total of 12 functions,
including a constant background field, a function taken from
the Harris current sheet model (Harris 1962), and 10 spheri-
cal harmonic functions. For the convenience of describing the
potential field, the spherical harmonic functions are adopted
as a part of the fitting model. Such fitting can be expressed
as

 Bγ
Bθ
Bφ

 =

 B̃r

B̃θ
B̃φ

 + Txyz→γθφ ·


B0 tanh z−z0

Lz
+ B1

B̃θ
B̃φ

 , (B.1)

where
(
Bγ, Bθ, Bφ

)
are the three spherical coordinate system

magnetic field components at a spatial position (γ, θ, φ). The
first term on the right-hand side describes a potential field
from the spherical harmonic series shown below. The transform
matrix Txyz→γθφ. converts vector field from a common space-
craft Cartesian coordinate system to a spherical coordinate sys-
tem. The x-direction background magnetic field together with

the magnetic field in a Harris current model is shown in this
equation. Expression for B̃r, B̃θ, B̃φ is shown as

B̃r =
∑

n

∑
m

− (n + 1)
(Re

r

)n+2

·
(
qm

n cos (mϕ) + hm
n sin (mϕ)

)
· Pm

n (cos θ)

B̃θ =
Re

r

∑
n

∑
m

(Re

r

)n+1

·
(
qm

n cos (mϕ) + hm
n sin (mϕ)

)
· (− sin θ)

·
∂

∂θ

(
Pm

n (cos θ)
)

B̃φ =
Re

r sin θ

∑
n

∑
m

(Re

r

)n+1

·
(
qm

n (−m) · sin (mϕ) + hm
n · m · cos (mϕ)

)
· Pm

n (cos θ) ,

where Pm
n is the associated Legendre function with degree n and

order m of [n,m] = [1, 1], [2, 1], [2, 2], [3, 1], [3, 2], and qm
n and

hm
n are the coefficients in the spherical harmonic series.

Appendix C: Null-finder validation tools

Data files and source codes for testing null-finders are available
online3.

3 https://bitbucket.org/volshevsky/
magneticnullchallenge
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